Relevant Change Detection

A Framework for the Precise Extraction of Modified
and Novel Web-based Content as a Filtering Technique for Analysis Engines

Kevin Borgolte, Christopher Kruegel, Giovanni Vigna

Department of Computer Science
University of California, Santa Barbara
Santa Barbara, California, United States of America

kevinbo,chris,vigna@cs.ucsb.edu

ABSTRACT

Tracking the evolution of websites has become fundamental
to the understanding of today’s Internet. The automatic rea-
soning of how and why websites change has become essential
to developers and businesses alike, in particular because the
manual reasoning has become impractical due to the sheer
number of modifications that websites undergo during their
operational lifetime, including but not limited to rotating
advertisements, personalized content, insertion of new content,
or removal of old content.

Prior work in the area of change detection, such as XyDiff 3|,
X-Diff [8] or AT&T’s internet difference engine [4], focused
mainly on “diffing” XML-encoded literary documents or XML-
encoded databases. Only some previous work investigated
the differences that must be taken into account to accurately
extract the difference between HTML documents for which
the markup language does not necessarily describe the content
but is used to describe how the content is displayed instead.
Additionally, prior work identifies all changes to a website,
even those that might not be relevant to the overall analysis
goal, in turn, they unnecessarily burden the analysis engine
with additional workload.

In this paper, we introduce a novel analysis framework, the
Delta framework, that works by (i) extracting the modifications
between two versions of the same website using a fuzzy tree dif-
ference algorithm, and (ii) using a machine-learning algorithm
to derive a model of relevant website changes that can be used
to cluster similar modifications to reduce the overall workload
imposed on an analysis engine. Based on this model for exam-
ple, the tracked content changes can be used to identify ongoing
or even inactive web-based malware campaigns, or to automat-
ically learn semantic translations of sentences or paragraphs
by analyzing websites that are available in multiple languages.

In prior work, we showed the effectiveness of the Delta
framework by applying it to the detection and automatic
identification of web-based malware campaigns [2] on a data
set of over 26 million pairs of websites that were crawled over a
time span of four months. During this time, the system based
on our framework successfully identified previously unknown
web-based malware campaigns, such as a targeted campaign
infecting installations of the Discuz!X Internet forum software.

Copyright is held by the author/owner(s).
WWW’14, April 7-11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04.
http://dx.doi.org/10.1145/2567948.2578039.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software; H.3.1
[Information Storage and Retrieval]: Content Analysis
and Indexing; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Clustering, Information
filtering, Selection process; 1.2.3 [Artificial Intelligence]:
Deduction and Theorem Proving— Uncertainty, “fuzzy”, prob-
abilistic reasoning

Keywords

near-duplicate detection; change detection; change extrac-
tion; modified content extraction; analysis pipeline optimiza-
tion;

1 INTRODUCTION

Identifying and automatically tracking changes made to
websites has become essential to the understanding of today’s
Internet for developers and business alike as they leverage web-
based content more and more. Existing work in the area of web
evolution |1}[5H7] suggests that websites do not simply change
randomly or only with new content; instead, they evolve con-
stantly through many small changes. If one takes into account
the trend toward personalization of websites, such as through
personalized advertisements, a change is even likely to happen
at each visit, which, in turn, makes it necessary to check if any
relevant changes were made on each single visit. Very often,
the relevancy of a change is determined by computationally
costly analysis engines. Overall, these results suggest that it
becomes increasingly expensive for developers and business to
reason about the novelty of crawled web-based content, i.e., if it
has been seen yet (possibly in a slightly different, personalized
way), and it also becomes increasingly hard to filter modifi-
cations that might not be relevant for a given analysis goal.

In this short paper, we propose a solution to this problem by
introducing a framework to (i) identify and extract modified
relevant elements more accurately while ignoring irrelevant
changes, and (ii) to reduce the time spend to analyze changes
that are similar to previously observed modifications.

The main contributions of this short paper are:

e We introduce the Delta framework, a framework based on
a novel extension of existing change detection algorithms
to detect and identify relevant changes in websites more
accurately, to group similar changes, and to reduce the
workload of an analysis engine.

e We introduce a tree difference algorithm that is resistant
to tiny changes, for instance the correction of typographical


mailto:kevinbo@cs.ucsb.edu
mailto:chris@cs.ucsb.edu
mailto:vigna@cs.ucsb.edu

mistakes or evolutionary steps a website normally undergoes
that are not significant or relevant to the overall analysis
goal.

2 DESIGN

The Delta framework’s analysis process consists of four
simple steps that are responsible for extracting the relevant
changes made to a website and filtering out duplicates. For
each of these steps, some parameters must be chosen that
depend on how the relevant changes manifest themselves in
a website and in what way they need to be identified and can
be tracked. For instance, those parameters include threshold
values, evaluation functions and the clustering algorithm that
is being used to group similar modifications. The framework’s
four simple steps are:

1. Retrieval of the current version of the website and normal-
ization of the DOM-tree.

2. Similarity measurement with respect to a base version.

3. Clustering of similar modifications to reduce the submis-
sions that are being send to the analysis engine.

4. Analysis of the identified and novel modifications with a
potentially computationally costly analysis engine.

In the general setting of analyzing a website, one -clearly- has
to retrieve it first. Once the current version of a website was
retrieved, in the setting of the Delta framework, we perform
some basic normalization steps on the DOM-tree. These
normalization steps take care of simple semantic equivalences
that can be represented in syntactically different ways, for
instance, such as different quotation marks for attribute values
of HTML tags or the order in which attributes are listed.

In the second step, since the Delta framework leverages the
changes made to a website to reduce the analysis workload, we
require a base version of a website to which we can compare
the current version and based on which we can extract the
modified content. Such a base version can be (a) stored in a
locally kept database that caches a previously fetched version
(potentially selected or filtered according to some criteria), or
(b) retrieved from an online archive like the Internet Archiv
or a cache provided by a search engine. In our framework, the
difference between the base and the current version is then
extracted with an unordered fuzzy tree difference algorithm
that we describe in more detail in Section [B

Upon extraction of the modified content, the framework
leverages a machine learning algorithm, which uses specific
features to model the relevance of a modification, to discard
irrelevant changes and to cluster relevant and similar changes
together. For instance, in the case of detecting a web-based
malware campaigns, one want to use features that model
the same behavior and one also want to use a density-based
clustering method that includes outlier detection to recognize
early on when a new campaign starts. Thanks to this cluster-
ing step, we can filter out irrelevant changes as well as changes
that are similar to already observed modifications even before
the final, potentially computationally costly analysis occurs.
In this step, in sum, we are preventing the submission of
already analyzed content to the analysis engine.

Ultimately, only novel modifications that have not been
observed and analyzed yet are passed to the analysis engine
that then determines if the modifications are relevant or not,
for instance, if a website is malicious or if an English article
was translated to Spanish or French.

"http://www.archive.org

3 FUZZY TREE DIFFERENCE

A fundamental requirement to measuring the similarity
between two websites is an understanding of the notion of
difference, i.e., what does it mean that two websites are dif-
ferent? In case of the Delta framework, we are also only
interested in significant or relevant changes made to a website
in respect to our overall analysis goal. For example, a change
is generally not going to be relevant if simply the checksum
of a website changes, but instead one might want to track the
modifications that would make a site behave maliciously and
infect visitors with malware, or, one might only be interested
in the changes where the language changed from English to
French or Spanish. The applications of the framework and
the different notions of relevant modifications are endless.

This restriction to only relevant changes in terms of our
analysis goal makes it impossible to generally define the term
of a relevant modification. Since our goal is to provide a
general analysis framework regardless, we simply require that
any relevant difference can be expressed as a change between
the normalized DOM trees of the two websites, i.e., relevant
changes must survive the normalization step or a modified
normalization method must be employed.

To extract the changes made to a website, we leverage
existing work on change detection [3}/4},/8] and we employ a
tree difference algorithm that we generalize to a fuzzy notion
to remove irrelevant modifications as early on as possible. Our
fuzzy tree difference algorithm is shown in Algorithm [I] where
the arguments 77 and 7% correspond to the normalized DOM-
trees of base and current version, and where ¢, is the similarity
threshold. Ultimately, to the end of not discarding relevant
modifications, for a specific use of the framework one must
understand and define what changes are relevant and select
suitable threshold values as well as a suitable similarity mea-
sure between two strings and a suitable (fuzzy) hash function.

While the reasoning behind coloring nodes in our algorithm
might not be obvious in the first place, one can imagine lever-
aging the color of a node to analyze and keep track of the
propagation of a template or part of a website that is repeated
multiple times. For instance, to detect a matching asymmetry
if a new blog post based on the same template was published
while all prior posts are still being kept on the website.

Generally speaking, using a cryptographic hash function
when setting the threshold value of 1 corresponds to a standard
unordered tree-to-tree algorithms. On the contrary, setting the
threshold to 0 independent of the hash function is equivalent
to comparing all element with each other and therefore compu-
tationally impractical for any modern website because of the
extremely large number of possible combinations, which is why
reducing the number of potential match pairs through a sim-
ilarity measure is fundamental to leveraging computationally
more expensive analysis techniques.

For an example difference computation between two web
sites based on the algorithm, we refer to our prior work 2] that
discusses the nuances of the fuzzy tree difference algorithm
including a difference example in greater detail.

4 EFFECTIVENESS OF THE FUZZY
TREE DIFFERENCE ALGORITHM

In the previous section, we introduced the fuzzy tree dif-
ference algorithm, a generalization of existing tree difference
algorithms to a fuzzy notion. The algorithm is a cornerstone
of the Delta framework since it is responsible for the identi-
fication and removal of irrelevant modifications. To measure
its effectiveness, we now provide an overview on the reduction



Algorithm 1 Fuzzy Tree Difference

1 function FuzzYTREEDIFFERENCE(TY, 5, t,)
2 G + Graph
3 for all n € T .nodes do
4 G < G.insert_node(n)
5 for all n € T>.nodes do
6 for all m € T1.nodes do
7 if path(m) = path(n) then
8 d(m,n) < similarity (hash(m), hash(n))
9 if d(m’n) Z tr then
10 G .insert_node(n)
11 m.color < blue
12
13
14
15
16
17

n.color < blue
G.insert_edge(m, n, d(m,n))
M < max_weight_matching(G)
for all (m,n) € M do
T1.remove_node(m)
T>.remove_node(n)

18 return 73,75

in the number of tags that were extracted from a website pair,
and which we ultimately have to analyze to determine if they
are relevant changes.

For our work on detecting infection campaigns [2], we gath-
ered a data set of over 26 million unique pairs of websites
where for each pair the normalized DOM-trees are different in
their SHA256 checksum once flattened. For a more in-depth
discussion of the characteristics of our data set, we refer to
our prior work.

To evaluate the reduction capabilities of our framework, we
investigated to what degree we were able identify unmatched
tags, i.e., tags which were removed or inserted into the new
version of a website that are different from tags we observed
previously. Figure [l| provides an overview about the number
of tags that did not match any other tag. In detail, the
introduced framework can, even for very high threshold values
(tr = 0.99), efficiently reduce the number of relevant tags that
are extracted from the distinct pairs of websites where a stan-
dard tree-to-tree algorithm would identify vastly more tags.
In turn, this reduction allows us to use more computationally
costly analysis methods in later steps while still keeping the
total amount of time that is being spend analyzing constant.

For instance, in the case of the Delta-system, for over 80%
of all pairs, we eliminated all potential matches in which a
standard tree difference algorithm would have identified at
least one tag as being different and were additional analysis
time would have been spend unnecessarily if not for the fuzzy
nature of our approach. If the work per modification is con-
stant, the reduction observed corresponds to a reduction in
analysis time of at least 80%.

S CONCLUSION

In this paper, we introduced the Delta framework, a more
general notion of the Delta-system [2], i.e., a novel, light-weight
framework to identify, extract and filter relevant changes made
to websites before passing them on for further analysis. To
support the accurate extraction of the relevant modifications
made to a website, the framework leverages a fuzzy tree dif-
ference algorithm that extracts DOM-tree nodes that were
more heavily modified than others, i.e., it can discard changes
in single characters or words, and can even discard legitimate
evolutions of a website that would not yield any further in-
sight after analysis. In addition, to keep the overall analysis

Unique Different Tags in a Pair CDF

0.90F

Iy

0

&
.

Ratio of Total Pairs

e

=

ot
-

1 2 345 810 1520 30 50 80 120
Tags

Figure 1: Overview of website pairs that have at most x tags
unmatched tags (removed and inserted tags are combined).

workload low, the framework’s clustering step groups together
similar modifications, which allows to transfer analysis results
within a group of the same change without requiring analysis.

As an example use case of the Delta framework, we re-
ferred to the Delta-system that successfully detects previously
unknown web-based malware campaigns in the wild. Addi-
tionally, we support our claim of the reduction capabilities of
the Delta framework by investigating the number of extracted
relevant modifications in comparison to a standard tree-to-tree
comparison algorithm. Ultimately, the reduction capabilities
of the framework combined with its clustering step support
the use of more elaborate and computationally more expensive
analysis techniques that can be more precise.

Acknowledgment

This work was supported by the Office of Naval Research
(ONR) under grant N000140911042, the Army Research Of-
fice (ARO) under grant W911NF0910553, the National Sci-
ence Foundation (NSF) under grants CNS-0845559 and CNS-
0905537, and Secure Business Austria.

6 REFERENCES

[1] R. Baeza-Yates, C. Castillo, and F. Saint-Jean.
Web Dynamics, Structure, and Page Quality.
In Web Dynamics, pages 93—109. Springer-Verlag, 2004.
[2] K. Borgolte, C. Kruegel,
and G. Vigna. Delta: Automatic Identification of
Unknown Web-based Infection Campaigns. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, pages 109-120. ACM, 2013.
[3] G. Cobena,
S. Abiteboul, and A. Marian. Detecting changes in XML
documents. In Data Engineering, 2002. Proceedings. 18th
International Conference on, pages 41-52. IEEE, 2002.
[4] F. Douglis, T. Ball, Y.-F. Chen, and E. Koutsofios. The
AT&T Internet Difference Engine: Tracking and viewing
changes on the web. World Wide Web, 1(1):27-44, 1998.

[5] F. Douglis, A. Feldmann, B. Krishnamurthy,

and J. Mogul. Rate of Change and other Metrics:

a Live Study of the World Wide Web. In Proceedings

of the USENIX Symposium on Internet Technologies

and Systems, volume 119. USENIX Association, 1997.

D. Fetterly, M. Manasse, M. Najork, and J. Wiener.

A large-scale study of the evolution of web pages.

In Proceedings of the 12th International Conference on

World Wide Web, WWW 03, pages 669-678. ACM, 2003.

[7] B. A. Huberman and L. A. Adamic. Evolutionary Dynam-
ics of the world wide web. Condensed Matter, January 1999.

[8] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An
effective change detection algorithm for XML documents.
In Proceedings of the 19th International Conference on
Data Engineering, ICDE ’03, pages 519-530. IEEE, 2003.

=



	Introduction
	Design
	Fuzzy Tree Difference
	Effectiveness of the Fuzzy Tree Difference Algorithm
	Conclusion
	References

